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Abstract
A method of constructing explicit formulae for Green’s matrix function of the
time-dependent Maxwell system for a homogeneous non-dispersive dielectric
with a general form of the anisotropy is described. This method consists of
two parts. In the first part a matrix function depending on the time variable
and three Fourier parameters is determined. This matrix function, being the
Fourier image of Green’s matrix function with respect to three space variables,
is constructed in an explicit form. The second part of the method is the inverse
Fourier transform of the determined matrix function. The robustness and
advantages of this method are confirmed by numerical experiments. Examples
of simulations of electromagnetic fields in anisotropic crystals are presented.

PACS numbers: 03.50.De, 41.20.−q, 42.25.Bs

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Finding Green’s functions of partial differential equations and systems describing different
physical processes and phenomena is one of the fundamental topics in mathematical physics.
The essential ingredient in the boundary element method for modelling mechanical and
electromagnetic behaviour of advanced materials is Green’s function as well [1–5]. Green’s
functions for many scalar equations of mathematical physics with constant coefficients have
been found in an explicit form (see, for example [6–8]). Explicit formulae for Green’s
functions for isotropic linear elasticity and electrodynamics in infinite homogeneous media
are well known (see, for example [3, 9]). Green’s function study for anisotropic elastic
materials is contained in [10–12]. Different approaches to constructing Green’s function for
the Maxwell system in isotropic and particular cases of anisotropic media were studied in
[13–20]. But besides that it would be very useful to know Green’s function for anisotropic
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electromagnetic media with a general form of the anisotropy for the study of such advanced
materials as anisotropic dielectrics, ferrites and plasmas.

This paper is devoted to constructing Green’s function for time-dependent electromagnetic
fields in homogeneous non-dispersive anisotropic dielectrics. Maxwell’s system is considered
in infinite space with zero initial data and directional pulse point density of an electric current
with three different basis directions. The main result of this paper is a new method of
constructing explicit formulae for Green’s function of Maxwell’s system for crystals with a
general form of the anisotropy. This method consists of two parts. In the first part a matrix
function depending on a time variable and three parameters is constructed. This matrix, being
the Fourier image of Green’s function with respect to three space variables, is constructed in
an explicit form. In the second part Green’s function is found by the inverse Fourier transform
of this matrix function. The robustness and advantages of this method are confirmed by
computational experiments.

The paper is organized as follows. The equations of electrodynamics and the notion of
Green’s function as a matrix are described in section 2. Finding Green’s function of the electric
field in dielectrics is addressed in section 3. Analysis of computational steps and examples of
simulations electromagnetic fields in anisotropic crystals are described in section 4. Section 5
contains a conclusion and remarks.

2. Green’s function for Maxwell’s system

Let us consider an electromagnetic medium which is ideal, homogeneous, non-dispersive, and
linear, but anisotropic [21]. Anisotropic dielectrics can be considered as an example of such
anisotropic media. The dynamic wave propagation of electromagnetic waves in this medium
is described by the time-dependent system in which the dielectric permittivity is given by a
3 × 3 matrix [21].

Let x = (x1, x2, x3) be a space variable from R3, t be a time variable from R, then
Maxwell’s equations are

curlxH = E
∂E
∂t

+ j, curlxE = −µ
∂H
∂t

, (1)

divx(EE) = ρ, divx(µH) = 0, (2)

where E = (E1, E2, E3), H = (H1,H2,H3) are electric and magnetic intensity vectors,
Ek = Ek(x, t),Hk = Hk(x, t), k = 1, 2, 3; j = (j1, j2, j3) is the density of the electric
current, jk = jk(x, t), k = 1, 2, 3;µ is the magnetic permeability, E is the dielectric
permittivity, ρ is the density of electric charges. We assume the conservation law of charges

∂ρ

∂t
+ divx j = 0 (3)

is given and µ = 1, E = (εij )3×3 is a symmetric positive definite matrix with constant
elements.

We also suppose that

E = 0, H = 0 for t � 0, (4)

and

ρ = 0, j = 0 for t � 0.

This means there is no electromagnetic field, currents, or electric charges at the time t < 0.
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Remark 1. We note that the second equation of (2) follows from the second equation of (1) and
(4). The first equation of (2) can be obtained from the first equation of (1), equation (3) and
conditions (4). It means that equations (1) under conditions (4) are principal but conditions
(2) are consequences of (1), (3), (4).

Let E = (E1, E2, E3), H = (H1,H2,H3) be vector functions satisfying

curlxH = E
∂E
∂t

+ eδ(x)δ(t), (5)

curlxE = −µ
∂H
∂t

, (6)

E|t�0 = 0, H|t�0 = 0, (7)

where e is an arbitrary unit vector from R3; δ(t) is the Dirac delta function with respect to t;
δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function with respect to space variables. Let further
En = (

En
1 , En

2 , En
3

)
, Hn = (

Hn
1 ,Hn

2 ,Hn
3

)
be vector functions satisfying (5)–(7) for e = en,

where n = 1, 2, 3; e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
A matrix G(x, t) = (Gmn(x, t))6×3 is a Green’s function for Maxwell’s system if elements

of this matrix are defined as follows:

Gmn = En
m, m = 1, 2, 3; n = 1, 2, 3;

Gmn = Hn
m−3, m = 4, 5, 6; n = 1, 2, 3,

where En
m,m = 1, 2, 3 are components of En, and Hn

m−3,m = 4, 5, 6 are components of Hn.
To construct Green’s function means to solve the problem (5)–(7) for e = en, n = 1, 2, 3.

We also note that differentiating (5) with respect to t and using (6) we find that the electric
field E has to satisfy the vector equation

−curlxcurlxE = E
∂2E
∂t2

+ eδ(x)δ′(t), x ∈ R3, t ∈ R, (8)

E|t�0 = 0, (9)

where e is an arbitrary unit vector from R3; δ′(t) is the derivative of the Dirac delta function
δ(t).

In this paper we use equation (8) and condition (9) to construct E, and consequently En

if e = en, n = 1, 2, 3. After finding E and curlxE (or En and curlxEn, n = 1, 2, 3) we use
equation (6) and condition (7) to find H (or Hn, n = 1, 2, 3) by solving the ordinary differential
equation (6) with zero initial data.

3. Constructing Green’s function of the electric field

The main object of this section are problems (8), (9). The main outcome here is the method
of this problem solving for any unit vector e. As a result Green’s function of the electric field
is constructed.

Green’s function of the electric field here is a matrix GE = (
En

m

)
3×3 whose nth column

En = (
En

1 , En
2 , En

3

)
satisfies (8), (9) for e = en, n = 1, 2, 3.

Let Ẽ(ν, t) be the Fourier transform image of the electric field E(x, t) with respect to the
space variable x = (x1, x2, x3) ∈ R3, i.e.

Ẽ(ν, t) = Fx[E](ν, t),
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where

Fx[E](ν, t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
E(x, t) eiνx dx1 dx2 dx3,

ν = (ν1, ν2, ν3), xν = x1ν1 + x2ν2 + x3ν3, i2 = −1.

Problems (8), (9) can be written in terms of the Fourier image Ẽ(ν, t) as follows:

E
∂2Ẽ
∂t2

+ S(ν)Ẽ = −eδ′(t), t ∈ R, ν ∈ R3. (10)

Ẽ|t�0 = 0, ν ∈ R3, (11)

where

S(ν) =

ν2

2 + ν2
3 −ν1ν2 −ν1ν3

−ν1ν2 ν2
1 + ν2

3 −ν2ν3

−ν1ν3 −ν2ν3 ν2
1 + ν2

2


 . (12)

A procedure of solving (10), (11) is described below. The starting point for solving problem
(10), (11) is the construction of a non-singular matrix T such that

T T (ν)ET (ν) = I, (13)

T T (ν)S(ν)T (ν) = D(ν), (14)

where I is the identity matrix, D(ν) = diag(d1(ν), d2(ν), d3(ν)), dk(ν) � 0, k = 1, 2, 3;
T T (ν) is the transposed matrix to T (ν). The matrix T (ν) with properties (12), (13) exists
according to the matrix theory, see, for example, [22]. The scheme of this matrix construction
is the following. Using the diagonalization matrix procedure for the matrix E we find an
orthogonal matrix P and a diagonal matrix M such that

PT EP = M,

where M = diag(µ1, µ2, µ3), µk > 0, k = 1, 2, 3.

Remark 2. We note here that µk > 0, k = 1, 2, 3 are eigenvalues of E . Let M 1
2 be defined by

M 1
2 = diag(

√
µ1,

√
µ2,

√
µ3),

then E 1
2 , E− 1

2 are defined by

E 1
2 = PM 1

2 PT , E− 1
2 = (

E 1
2
)−1

.

Remark 3. The matrices E 1
2 , E− 1

2 satisfy the following properties: E 1
2 , E− 1

2 have constant
elements; E 1

2 , E− 1
2 are positive symmetric matrices;(

E− 1
2
)−1 = E 1

2 ; E− 1
2 E = E 1

2 ; (
E− 1

2
)T = E− 1

2 .

Consider now the matrix E− 1
2 S(ν)E− 1

2 , where S(ν) is defined by (12), and E− 1
2 is found

by the above-mentioned procedure. Using the diagonalization matrix procedure for the matrix
E− 1

2 S(ν)E− 1
2 we find an orthogonal matrix Q(ν) and a diagonal matrix D(ν) such that

D(ν) = QT (ν)
[
E− 1

2 S(ν)E− 1
2
]
Q(ν), (15)

where D(ν) = diag(d1(ν), d2(ν), d3(ν)), dk(ν) � 0, k = 1, 2, 3; QT (ν) = Q−1(ν).
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Letting now T (ν) = E− 1
2 Q(ν) we have the matrix T (ν) which satisfies (13), (14), where

the matrix D(ν) is defined by (15).
We are looking for the solution of problem (10), (11) in the form

Ẽ(ν, t) = T (ν)Y(ν, t), (16)

where the matrix T (ν) is just constructed and a vector function Y(ν, t) is unknown.
Substituting (16) into (10), (11) we find

ET
d2Y
dt2

+ S(ν)T Y = −eδ′(t), t ∈ R, ν ∈ R3, (17)

Y(ν, t)|t�0 = 0, ν ∈ R3. (18)

Multiplying (17) by T T (ν) and using (13), (14) we have

d2Y
dt2

+ D(ν)Y = −T T (ν)eδ′(t), t ∈ R, ν ∈ R3. (19)

The solution of the Cauchy problem (19), (18) is given by

Y(ν, t) = column(Y1(ν, t), Y2(ν, t), Y3(ν, t)), (20)

where for t < 0 the function Yn(ν, t) vanishes and for t � 0 it is defined by

Yn(ν, t) = −



[T T (ν)e]n cos(
√

dn(ν)t), dn(ν) > 0

[T T (ν)e]n, dn(ν) = 0
(n = 1, 2, 3).

The solution of (10), (11) is given now by formula (16), where the vector function Y(ν, t)

is defined by (20). The pre-image E(x, t) is determined by the inverse Fourier transform of
Ẽ(ν, t).

4. Computational steps and examples of simulations

4.1. Computational steps

The computation of explicit presentations for the matrices E 1
2 , E− 1

2 , Q(ν),QT (ν)T (ν),
T T (ν),D(ν) was realized by the symbolic transformation in MATLAB [23]. Formulae
obtained for these matrices are cumbersome in the case of an arbitrary positive definite matrix
E . For the case when E = εI, the matrices E 1

2 , E− 1
2 , Q(ν), T (ν),D(ν) have the following

forms:

E 1
2 = diag(

√
ε,

√
ε,

√
ε), E− 1

2 = diag

(
1√
ε
,

1√
ε
,

1√
ε

)
,

Q(ν) =




ν1|ν|−1 −ν3a
−1 −ν1ν2(a|ν|)−1

ν2|ν|−1 0 a|ν|−1

ν3|ν|−1 ν1a
−1 −ν2ν3(a|ν|)−1


 ,

D(ν) = diag

(
0,

|ν|2
ε

,
|ν|2
ε

)
, T (ν) = 1√

ε
Q(ν),

here |ν|2 = ν2
1 + ν2

2 + ν2
3 , a =

√
ν2

1 + ν2
3 .

We note that explicit formulae for matrices Q(ν), D(ν) and T (ν) take several pages even
if E = diag(ε1, ε2, ε3), εk > 0, k = 1, 2, 3. The sequence of MATLAB commands for finding
these matrices is listed in the appendix of this paper.
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Figure 1. The initial state: (a) 3D level plot of E1(x1, x2, 1, 0) and (b) 2D level plot of
E1(x1, x2, 1, 0).

As a result from explicit formulae for E 1
2 , E− 1

2 , Q(ν),QT (ν), T (ν), T T (ν),D(ν) and
(16), (20) we obtained the explicit form for the image Ẽ(ν, t) of the electric field.

In the next step we have to calculate 3D inverse Fourier transform of Ẽ(ν, t) with respect
to ν = (ν1, ν2, ν3). Because of the complexity of the explicit form for Ẽ(ν, t) the symbolic
calculation of the inverse Fourier transform was unsuccessful. That was the reason why the
numerical calculation of the inverse Fourier transform was realized on this step.

4.2. Examples of simulations

In this subsection we present the images of the wave propagations in anisotropic dielectrics
belonging to different crystal systems [21]. These pictures are obtained by fixing one of the
space variables in the component E1(x, t) of the solution E(x, t) of (3), (4). For experiments
we took the current density in the form j = eδ(x)δ(t), where e = e1. This pulse electric
source is concentrated at the point (0, 0, 0).

The electric permittivity E for different dielectrics is given by the following matrices:

E = diag(1.07, 1.07, 1.07) (barium peroxide, BaO2, [24])

E = diag(1.8, 1.8, 3.25) (mercurous sulfide, HgS, [24])

E = diag(1.64, 2.09, 3.24) (magnesium niobate, MgNb2O6, [24])

E =

3 1 0

1 5 0
0 0 9


 , (a dielectric with the monoclinic anisotropy)

E =

3 1 2

1 5 4
2 4 9


 , (a dielectric with the triclinic anisotropy).

Figure 1 contains the visualization of the component E1(x1, x2, 1, t) of the solution E(x, t)

for t ∼= 0. Figure 1(a) is a 3D graph of E1(x1, x2, 1, 0). On the vertical axis are plotted values
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(a) t = 0.4 (b) t = 0.6 (c) t = 0.7
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Figure 2. Wave propagation in barium peroxide: E1(x1, x2, 1, t).

(a) t = 0.4 (b) t = 0.7 (c) t = 0.9
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Figure 3. Wave propagation in mercurous sulfide: E1(x1, x2, 1, t).

(a) t = 0.4 (b) t = 0.7 (c) t = 0.85
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Figure 4. Wave propagation in magnesium niobate: E1(x1, x2, 1, t).

of E1, the horizontal axes are x1, x2. Figure 1 (b) is two-level plots of the same surface of
E1(x1, x2, 1, 0). We note that graphs of E1(x1, x2, 1, 0) for different dielectrics are similar for
t = 0.

Figures 2–4 contain three screen shots of the wave propagations in dielectrics barium
peroxid (BaO2), mercurous sulfide (HgS), magnesium niobate (MgNb2O6), respectively. The
matrices of electric permittivities E have the diagonal form for these crystals. Figures 5 and
6 contain screen shots of waves in dielectrics with monoclinic and triclinic structures of the
anisotropy. The permittivity matrices E are not diagonal in these cases. These figures are 2D
level plots of E1(x1, x2, 1, t) for the different time.
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(a) t = 0.2 (b) t = 0.45 (c) t = 0.55
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Figure 5. Wave propagation in a dielectric with the monoclinic anisotropy: E1(x1, x2, 1, t).

(a) t = 0.2 (b) t = 0.45 (c) t = 0.55
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Figure 6. Wave propagation in a dielectric with the triclinic anisotropy: E1(x1, x2, 1, t).

5. Conclusion and remarks

An efficient method for constructing Green’s function of the time-dependent Maxwell system
in dielectrics with a general form of anisotropy was described in this paper. The very important
step in this method was finding the explicit form of the Fourier image of Green’s function with
respect to the space variables. After that Green’s function was found by the inverse Fourier
transform of this explicit image. The second step was obtained by the numerical calculation.
The robustness of this method was confirmed by several computational experiments.

We note that the explicit formulae for the Fourier image of Green’s function for the electric
field G̃E(ν, t) can be efficiently used for finding electric field arising from an arbitrary electric
current density. To show this fact let us suppose now that j(x, t) be an arbitrary vector function
with the explicit form for the Fourier image j̃(ν, t) = Fx[j](ν, t); E(x, t) be the electric field
satisfying the following vector equation:

−curlxcurlxE = E
∂2E
∂t2

+
∂j
∂t

, x ∈ R3, t ∈ R,

E|t�0 = 0.

Let further

Ẽ(ν, t) = Fx[E](ν, t), G̃E(ν, t) = Fx[GE](ν, t), ν = (ν1, ν2, ν3).

Using the generalized function technique [7] we can show that the expression for Ẽ(ν, t) is
calculated by the following formula:

Ẽ(ν, t) =
∫ ∞

0
G̃E(ν, t − τ)j̃(ν, τ ) dτ.
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Using this formula and the procedure of section 3 the expressions for G̃E(ν, t − τ), Ẽ(ν, t)

can be found in explicit forms by symbolic transformations. To find E(x, t) as the next step
we need to apply the inverse Fourier transform numerically to Ẽ(ν, t) with respect to three
parameters ν1, ν2, ν3.

We note that the simulation of electromagnetic fields based on explicit formulae is the best
one. But unfortunately it is impossible to find explicit formulae for general inhomogeneous
anisotropic media. For this we need to construct approximate solutions by numerical
procedures and methods and then simulate electromagnetic fields. The method of this paper
for constructing Green’s function in anisotropic homogeneous media can be used as a staring
point for finding Green’s functions in anisotropic inhomogeneous media for small values of t
at a small neighbourhood of the point x = 0, where the pulse point source is concentrated. In
the case of a small neighbourhood of the point x = 0 we can suppose that the inhomogeneous
medium is approximated by the homogeneous medium.
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Appendix

This section deals with a description of a procedure for finding matrices E 1
2 , E− 1

2 ,Q(ν),
QT (ν),D(ν), T (ν), T T (ν) by MATLAB. The list of commands of matrix operations is the
following:

INPUT : Eps, S

[EigVecEps, EigValEps] = eig(Eps)

P = EigVecEps
PT = Inv(EigVecEps)
M = EigValEps
Mh = sqrt(M)

SqrEps = P ∗ Mh ∗ PT

InvSrtEps = inv(SqrEps)
A = simplify(InvSrtEps ∗ S ∗ InvSrtEps)
[EigVecA, EigValA] = eig(A)

D = simplify(EigValA)

Q = simplify(EigVecA)

Q(:, 1) = Q(:, 1)./sqrt(sum(Q(:, 1).∧2))

Q(:, 2) = Q(:, 2)./sqrt(sum(Q(:, 2).∧2))

Q(:, 3) = Q(:, 3)./sqrt(sum(Q(:, 3).∧2))

transQ = Q.′

transT = T .′

OUTPUT : SqrEps, InvSrtEps, Q, transQ = Q.′, T , transT = T .′

Here Eps = E, SqrEps = E 1
2 , InvSqrEps = E− 1

2 ,Q = Q(ν), transQ = QT (ν), T =
T (ν), transT = T T (ν).

Let E be given, for example, as E = diag(ε11, ε11, ε33), where ε11, ε33 are symbols.
Applying the standard commands we input matrices E, S(ν) whose elements are symbols.
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These commands are the following:

eps11 = sym(′eps11′, ′real′)
eps33 = sym(′eps33′, ′real′)
ν1 = sym(′ν1′, ′real′)
ν2 = sym(′ν2′, ′real′)
ν3 = sym(′ν3′, ′real′)
Eps =[eps11, 0, 0; 0, eps11, 0; 0, 0, eps33]
S =[ν2∧2 + ν3∧2,−ν1∧2 ∗ ν2∧2,−ν1∧2 ∗ ν2∧3;
−ν1∧2 ∗ ν2∧2, ν1∧2 + ν3∧2,−ν2∧2 ∗ ν3∧2;
−ν1∧2 ∗ ν3∧2,−ν2∧2 ∗ ν3∧2, ν1∧2 + ν2∧2].

.

As a result of the above-described procedures we find

E 1
2 = diag(

√
ε11,

√
ε11,

√
ε33), E− 1

2 = diag

(
1√
ε11

,
1√
ε11

,
1√
ε33

)
,

D(ν) = diag

(
0,

|ν|2
ε11

,
ε11ν

2
1 + ε11ν

2
2 + ε33ν

2
3

ε11ε33

)
,

Q(ν) =




(ε11/ε33)
1/2c(ν1/ν3) −b(ν2/ν1) −(ε33/ε11)

1/2d(ν1ν3)
/(

ν2
1 + ν2

2

)
(ε11/ε33)

1/2c(ν2/ν3) b −(ε33/ε11)
1/2d(ν2ν3)

/(
ν2

1 + ν2
2

)
c 0 d


 ,

T (ν) =




(1/ε33)
1/2c(ν1/ν3) −(1/ε11)

1/2b(ν2/ν1) −(
ε

1/2
33 /ε11

)
k(ν1ν3)/

(
ν2

1 + ν2
2

)
(1/ε33)

1/2c(ν2/ν3) (1/ε11)
1/2b −(

ε
1/2
33 /ε11

)
k(ν2ν3)/

(
ν2

1 + ν2
2

)
(1/ε33)

1/2c 0 (1/ε33)
1/2k


 ,

where

k =
(

ε11
(
v2

1 + v2
2

)
+ ε33v

2
3

ε11
(
ν2

1 + ν2
2

)
)−1/2

, c =
(

1 +
ε11

ε33

ν2
1

ν2
3

+
ε11

ε33

ν2
2

ν2
3

)−1/2

d =
(

1 +
ε33

ε11

ν2
1ν

2
3(

ν2
1 + ν2

2

)2 +
ε33

ε11

ν2
2ν

2
3(

ν2
1 + ν2

2

)2

)−1/2

,

b = (
1 + ν2

2

/
ν2

1

)−1/2
, |ν|2 = ν2

1 + ν2
2 + ν2

3 .

The matrices QT (ν), T T (ν) are defined as transpose to Q(ν), T (ν), respectively.

Remark 4. If the matrix E is symmetric with more general structure then the matrices E 1
2 ,

E− 1
2 ,Q(ν), QT (ν),D(ν), T (ν), T T (ν) can be found by described procedures explicitly but in

the form of cumbersome symbolic expressions.
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